Характеристика средств измерения электрических величин. Исембергенов Н.Т Методы и средства измерений и контроля электрических величин. Учебно методичный комплекс - файл n1.doc Измерение и контроль электрических величин

«Ни одной точной науки,

ни одной прикладной науки

без измерений.

Новые средства измерений

знаменуют собой настоящий прогресс».

/акад. Якаби Б. С./

Лекция 1

1. Введение и задачи курса.

2. Общие сведения об измерениях и измерительной аппаратуре:

а) основные понятия и определения;

б) системы единиц, основные единицы системы СИ;

в) виды средств эл. измерений;

г) меры электрических величин;

д) классификация электрических измерительных приборов;

е) основные характеристики и параметры электрических измерительных приборов.

Введение

Познание окружающей нас действительности, изучения закономерностей явлений природы, развитие науки и техники неразрывно связано с измерениями.

«Наука начинается... с тех пор, как начинают измерять; точная наука немыслима без меры». - писал Д. И. Менделеев.

Измерение, т. е. определение числового значения той или иной величины, играет исключительную роль в народном хозяйстве. Нет такой области науки и техники, нет такой отрасли промышленности или сельского хозяйства, где одним из решающих факторов не было бы измерение как таковое.

Научно-технический прогресс является центральной экономической и важной политической задачей нашей страны. Стержнем научно-технического прогресса является повышение производительности труда путем автоматизации производства, автоматизации управления и ускорения научных исследований с целью быстрейшего внедрения их производства.

Главная задача 10-ой пятилетки состоит в последовательном осуществлении курса КПСС на подъем материального и культурного уровня жизни народа на основе динамичного и пропорционального развития общественного производства и повышения его эффективности, ускорения научно-технического прогресса, роста производительности труда, всемирного улучшения качества работы во всех звеньев народного хозяйства.

Для решения этих задач предусматривается в промышленности...

Расширить выпуск прогрессивных, экономичных видов машин, оборудования и примеров для всех отраслей народного хозяйства.

Увеличить выпуск приборов и средств автоматизации в 1,6-1,7 раза, средств вычислительной техники в 1,8 раза.

Развивать производство... устройств регистрации и передачи информации для автоматизированных систем управления технологическими процессами и оптимального управления в отраслях народного хозяйства.

Расширить производство приборов для нужд сельского хозяйства.

Изучение явлений природы, отыскание законов, которым эти явления подчинены, и вообще всякие научные изыскания всегда связаны с измерениями, так как такие исследования сводятся в конечном итоге к определению количественных соотношений, через которые вскрываются и качественные стороны изучаемых явлений и предметов.

Совершенствование техники измерений, проявляющееся в повышение точности измерений и в создании новых методов и приборов, способствует определенным новым достижениям в науке.

Новые открытия в науке в свою очередь приводят к совершенствованию техники измерений, а также к созданию новых приборов.

Современная информационно-измерительная техника располагает совокупностью средств измерения около двухсот различных физических величин электрических, магнитных, тепловых, механических, световых, акустических и др.

Огромное количество различных величин в процессе измерения преобразуется в величины электрические как наиболее удобные для передачи, усиления сравнения, точного измерения.

Поэтому в развитии современной информационно-измерительной технике преобладающие значение приобретает развитие средств измерений электрических величин.

Уровень развития электроизмерительной техники в значительной степени определяет состояние технического прогресса во всех отраслях народного хозяйства. 29.04.1745г. был представлен академиком Рихмоном общему собранию Петебуржской академии «Указатель электрической искры » - первый электроизмерительный прибор.

В настоящее время без качественной эл. измерительной техники невозможно проведение научных исследований на современном уровне, а также невозможно реализация потенциала современного парка ЭВМ, разработка и внедрение систем автоматизированного контроля и управления – основного средства технического прогресса и повышения производительности труда.

Электроизмерительные приборы и устройства широко применяются в промышленности при научных исследованиях, в космонавтике, на транспорте в системах связи и навигации, в геологоразведке, в гидрометеорологии и во многих других областях трудовой деятельности человека.

Это объясняется преимуществами, присущими электрическим измерениям, основными из которых являются:

1. Широкий диапазон измеряемых величин, характеризуемый 18-го разрядами (например, по напряжению от 10-14 до 106 В, по току от 10-9 до 106 А, по сопротивлению от 10-6 до 10-14 Ом);

2. Высокая чувствительность (например, по току 1*1012 мм/А, по напряжению 1·106 мм/В).

3. Высокая точность. Погрешность современных показывающих приборов доведена до 0,05%, а приборов сравнения – до 0,001%.

4. Возможность получать значение измеряемой величины не только в данный момент, но и записывать изменение ее во времени.

5. Осуществимость измерений на расстоянии (телеизмерения).

6. Возможность измерять неэлектрические величины электрическими методами.

7. Осуществимость автоматизации получения и обработки результатов измерения.

8. Возможность производить измерения без нарушения хода технологического процесса.

9. Возможность измерения как медленно так и быстро изменяющихся величин.

Выполнение величественных планов развития народного хозяйства 10-ой пятилетке, осуществление грандиозных строительств, ставят перед всеми отраслями советской промышленности новые задачи. Такие задачи стоят и перед электротехникой – в частности, и перед электроизмерительной техникой.

Увеличение выработки эл. энергии в стране к 1980 году до 1340-1380 млрд. кВт*ч, осуществление плана комплексной механизации и автоматизации производства потребуют создания качественно новых электроизмерительных приборов и устройств, замены устаревших приборов современными, основанными на новых принципах измерениях.

В настоящее время электроизмерительная техника интенсивно развивается в следующих направлениях:

а) повышение точности и быстродействия, расширение частичного диапазона, улучшение конструкции многообразных эл. измерительных приборов;

б) расширение номенклатуры и улучшение характеристик разнообразных измерительных преобразователей, широко применяемых при измерениях электрических и неэлектрических величин, а также в системах автоматического управления;

в) разработка и выпуск различных специализированных эл. измерительных установок, предназначенных для проверки эл. измерительных приборов, испытания ферромагнитных материалов и других целей;

г) выпуск и совершенствование ИИС, предназначенных для автоматического получения, передачи, обработки и представления в той или иной форме и в значениях измеряемых или контролируемых физических величин (ИИС – информационно-измерительной системы);

д) совершенствование и создание новых государственных эталонов единиц эл. величин, что обеспечивает повышение уровня точности эл. измерений.

Особую роль должны сыграть эл. измерения в электрификации с/х. Возрастающая с каждым годом автоматизация производственных процессов в животноводстве и полеводстве, внедрение эл. энергии в биологические процессы на базе общей электрификации с/х неразрывно связаны с развитием эл. измерительной техники.

В связи с автоматизацией управления и регулирования, которые все меры будут внедрять в с/х производство, значительно усложняются требования к эл. измерительной технике. Наличающийся постепенный переход к технологии поточного производства ив животноводстве и полеводстве выдвигает новые требования к технологическим измерениям, обеспечивающим высокую надежность работы и качества продукции.

Решение указанных задач сегодня требует, чтобы инженер с/х производства хорошо ориентировался в обширном круге вопросов, обладал серьезной технической эрудицией.

В частности, от инженера-электрика требуется глубокое знание теории и практики эл. измерений.

2. Общие сведения об измерениях и измерительной аппаратуре.

а) основные понятия и определения.

Количественная оценка свойств различных объектов измерения (исследования) осуществляется путем измерения физических величин, характеризующих указанные свойства.

Измерением называется познавательный процесс, заключающийся в сравнении опытным путем измеряемой величины с некоторым ее значением, принятым за единицу.

В более широком смысле

Измерение – это процесс приема и преобразования информации об измеряемой величине для получения количественного результата ее сравнения с единицей измерения в форме, наиболее удобной для исследования.

Таким образом, измерение представляет собой процесс получения информации: после измерения мы узнаем о численном значении измеряемой величины, ее связях и соотношениях с другими величинами больше, чем мы знали до измерения.

Значит, измерение это экспериментальное сравнение измеряемой величины с другой однородной величиной, принятой и узаконенной в качестве единицы. Так как измерение представляет собой физический эксперимент, оно не может быть осуществлено умозрительно, абстрактно. Из этого следует, что для любого измерения необходимы узаконенная система единиц и технические средства ее осуществления.

Результатом измерения всегда является числовое значение измеряемой величины А, которое равно отношению измеряемой величины Аиз к единице измерения Х. Иными словами, числовое значение показывает, во сколько раз измеряемая величина больше или меньше единицы измерения.

Процесс измерения, следовательно, может быть записан так:

А= Аиз/Х, откуда Аиз= А·Х, т. е. «измеряемая величина Аиз составляет столько-то А единиц Х».

Последнее уравнение называется основным уравнением измерения.

б) система единиц. Основные единицы СИ.

Системой единиц называется совокупность основных и производных единиц измерения, охватывающих некоторую область измерений физических величин.

В СССР с 1 января 1963 года введен в действие ГОСТ 9867-61, которым рекомендуется применение СИ как предпочтительной во всех областях науки и технике, а также при преподавании.

Международная система единиц (СИ) построена на семи основных единицах двух дополнительных и 27 производных.

Основные единицы СИ.

Размер основных единиц устанавливается независимо от размеров других единиц.

Производные единицы – определяются уравнениями связи, выражающими математическую зависимость данной единицы от других единиц.

Наименование величины

Единица измерения

Сокращенное обозначение

русское

латинское

килограмм

Сила эл. тока

Термодинам.

температуры

Сила света

Количество

вещества

моль

Дополнительные единицы

1. Радиан – угол между двумя радиусами круга, вырезающими на его окружности дугу, длина которой равна радиусу (единицы линейного угла).

2. Стерадиан – телесный угол, величина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной равной радиусу сферы (единицы телесного угла).

В измерительной практике очень часто пользуются кратными и дольными единицами. Они образуются путем умножения целых единиц на 10к, где к – целое число. При этом к наименованиям единиц прибавляют соответствующие приставки.

Дольность или кратность

Наименование приставки

Сокращенные обозначения (русское)

Дольность или кратность

Наименование

приставки

Сокращенное обозначение

(русское)

Виды средств электрических измерений.

Средствами электрических измерений называют технические средства, используемые при электрических измерениях и имеющие нормированные метрологические свойства.

Различают следующие виды средств электрических измерений:

2. Электрические измерительные приборы.

3. Измерительные преобразователи.

4. Электроизмерительные установки.

5. Измерительные информационные системы (ИИС).

Мерами называют средства измерений, предназначенные для воспроизведения физической величины заданного размера. (Вещественно воспроизведенная единица измерения).

Различают однозначные, многозначные меры и набор мер.

Однозначная мера воспроизводит физическую величину одного размера.

Многозначная мера воспроизводит ряд одноименных величин различного размера (конденсатор переменной емкости, вариометр индуктивности и др.).

Набор мер представляет собой специально подобранный комплект мер, применяемых не только по отдельности, но и в различных сочетаниях с целью воспроизведения ряда одноименных величин различного размера (магазин сопротивлений).

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов измерительной информации, т. е. сигналов функционально связанных с измеряемыми физическими величинами, в форме, доступной для непосредственного восприятия наблюдателем.

Меры электрических величин.

В практике электрических измерений в качестве мер широко используют меры э. д.с., электрических сопротивлений, индуктивности, взаимоиндуктивности и емкости.

Мера Э. Д.С. Образцовой мерой э. д.с. служит нормальный элемент, представляющий собой гальванический элемент, характеризующийся весьма стабильным значением, развиваемой им э. д.с. Э. Д.С. н. э. отличаются от 1 В, но она точно известна. Это достигается подбором составных частей элемента из строго определенных по химическому составу веществ, точной их дозировкой и строго однообразной конструкцией. При температуре 20оС э. д.с. насыщенного н. э. составляет 1.0185 – 1.0187 В, т. е. наиболее допустимое расхождение значений э. д.с. превосходит 200 мкВ. Н. Э. изготавливают двух типов: насыщенные и ненасыщенные, отличающиеся друг от друга конструкцией, электролитом и стабильностью развиваемой э. д.с. Ненасыщенные – имеют меньшее внутренние сопротивление (~300 Ом) и малый температурный коэффициент. При температуре от 10 до 40оС – не превышает 15 мкВ на 1оС. У насыщенных – температурный коэффициент в 4 раза больше э. д.с.

Н. Э. мало меняется во времени. Согласно ГОСТ 1954 – 64, допускается изменение э. д.с. насыщенного н. э. за год не более 50 – 100 мкВ.

В зависимости от точности определения э. д.с., ее стабильности н. э. подразделяются на классы.

Н. Э. не может быть использован как источник электрической энергии, его нельзя нагружать током, превышающим допустимые значения.

Меры электрического сопротивления выполняют в виде образцовых измерительных катушек сопротивления или измерительных магазинов сопротивления. Значение сопротивлений их 10±n Ом, где n – целое число.

Образцовые катушки снабжают двумя парами зажимов, два из которых называются токовыми и предназначены для включения образцовой катушки в цепь тока, два других называются потенциальными. Сопротивление между потенциальными зажимами равно сопротивлению образцовой катушки к потенциальным зажимам присоединяются провода, идущие к измерительной схеме.

К материалу, из которого изготавливаются катушки, предъявляются следующие требования:

1) возможно больше удельное сопротивление;

2) наименьшей температурный коэффициент и термо э. д.с. в паре с другими металлами;

3) устойчивость металла провода против окисления.

Этим требованиям лучше всего удовлетворяет манганин.

В зависимости от погрешности образцовых сопротивлений и других характеристик (изменение сопротивлений с течением времени, допустимой мощности и др.) образцовые сопротивления делятся на классы точности, для которых погрешности и другие характеристики нормируются соответствующими ГОСТ.

Меры индуктивности и взаимоиндуктивности.

Меры L и M выполняют в виде отельных катушек или магазинов. Образцовые катушки индуктивности и взаимной индуктивности обычно изготавливают в виде плоских катушек из изолированной тонкой проволоки, намотанной на каркас. Катушки должны обладать постоянство индуктивности, малым активным сопротивлением, независимостью индуктивности от величины тока и возможно малой зависимостью индуктивности от чистоты тока.

Для получения независимости L катушки от силы тока каркас катушки изготавливают из материала, М которого равна единицы и не зависит от магнитной индукции в нем (фарфор, мрамор, керамика, пластмассы, реже – дерево). Для обмоток выбирают многожильный провод (для уменьшения влияния частоты – уменьшают распределенную емкость).

Катушки взаимной индуктивности состоят из двух обмоток, жестко укрепленных на общем каркасе.

Мерами с переменными значениями L и М служат вариометры.

Меры емкости . Ими служат воздушные (не более 11000 пФ) или слюдяные конденсаторы постоянной и переменной емкости.

Образцовые меры емкости должны обладать постоянством емкости и малым ее температурным коэффициентом, весьма малыми потерями энергии в диэлектрике, независимостью емкости от частоты и формы кривой тока и высоким сопротивлением и прочностью изоляции.

Классификация мер и измерительных приборов.

Электрические измерительные приборы весьма разнообразны по принципу действия и конструктивному оформлению, вследствие различных требований, предъявляемых к ним.

Меры и измерительные приборы можно классифицировать по ряду признаков.

1. По функциональному признаку:

а) средства сбора, обработки и представления информации;

б) средства аттестации и проверки.

а) рабочие меры и измерительные приборы;

б) образцовые меры и измерительные приборы;

в) эталоны.

Эталон – это мера, воспроизводящая единицу измерения с наибольшей для данного исторического времени точностью.

2. По способу представления результатов измерения:

а) показывающие;

б) регистрирующие.

3. По методу измерения:

а) непосредственного отсчета;

б) сравнения.

4. По способу применения и по конструкции:

а) переносные;

б) стационарные.

5. По точности измерения:

а) измерительные;

б) индикаторы;

в) указатели.

6. По способу воспроизведения измеряемой величины:

а) аналоговые;

б) цифровые.

Аналоговые – электрические измерительные приборы, показания которых являются непрерывными функциями изменений измеряемой величины.

Цифровые – электрические измерительные приборы, автоматически вырабатывающие дискретные сигналы изменения информации, показания которых представлены в цифровой форме.

Методы измерения токов и напряжений зависят от величины и вида этих электрических величин.

Для определения малых постоянных токов можно использовать как прямые, так и косвенные измерения. В первом случае ток можно измерять зеркальными гальванометрами и стрелочными магнитоэлектрическими приборами. Наименьший ток, который можно измерить зеркальным гальванометром, равен приблизительно 10" п А, а стрелочный магнитоэлектрический прибор позволяет измерить величину 10 6 А.

Косвенно неизвестный ток определяют по падению напряжения на высокоомном резисторе или по заряду, накопленному конденсатором. В качестве приборов используются баллистические гальванометры с минимально измеряемым током 10‘ 12 А и электрометры с минимально измеряемым током 10 17 А.

Электрометрами называют приборы высокой чувствительности по напряжению с входным сопротивлением до 10 15 Ом. Механизм электрометра представляет собой разновидность механизма электростатического прибора, который имеет один подвижный и несколько неподвижных электродов, находящихся под разными потенциалами.

Квадрантный электрометр представлен на рис. 2.1.

Рис. 2.1.

Устройство имеет подвижную часть 1 с зеркалом 2, которая закреплена на подвесе 3 и расположена внутри четырех неподвижных электродов 4, называемых квадрантами. Измеряемое напряжение Их включается между подвижной частью и общей точкой, а на квадранты от вспомогательных источников подаются постоянные напряжения U, значения которых равны, но противоположны по знаку. Отклонение подвижной части в этом случае равно

где С - емкость между подвижным электродом и двумя соединенными между собой квадрантами, М- удельный противодействующий момент, зависящий от конструкции подвеса. Отклонение подвижной части, а следовательно, и чувствительность электрометра пропорциональны вспомогательному напряжению U, значение которого обычно выбирают в пределах до 200 В. Чувствительность квадрантных электрометров при вспомогательном напряжении 200 В достигает 10 4 мм/В.

К средним токам и напряжениям условно можно отнести токи в диапазоне от 10 мА до 100 А и напряжения от 10 мВ до

600 В. Для измерения средних постоянных токов можно использовать прямые и косвенные измерения. Для измерения напряжений используют только прямые измерения.

При прямых измерениях ток и напряжение можно измерять приборами магнитоэлектрической, электромагнитной, электродинамической и ферродинамической систем, а также электронными и цифровыми приборами Напряжение можно измерять приборами электростатической системы и потенциометрами постоянного тока.

Наиболее точные приборы магнитоэлектрической системы, предназначенные для измерения средних токов и напряжений, имеют класс точности 0,1.

В тех случаях, когда необходимо измерить напряжение или ток с высокой точностью, используют потенциометры постоянного тока, цифровые вольтметры и амперметры. Класс точности наиболее точных потенциометров 0,001, цифровых вольтметров - 0,002, а цифровых амперметров - 0,02. Измерение тока при помощи потенциометра проводят косвенным путем, при этом искомый ток определяют по падению напряжения на образцовом резисторе. Преимуществом потенциометров и цифровых приборов является малое потребление мощности.

Измерение больших токов и напряжений проводят с помощью аттенюаторов. Шунтирование магнитоэлектрических приборов дает возможность измерять постоянные токи до нескольких тысяч ампер. Обычно для измерения больших токов часто используют несколько шунтов, соединенных параллельно. Несколько одинаковых шунтов подключают в разрыв шины, а проводники от потенциальных зажимов всех шунтов подводят к одному и тому же прибору.

Электростатические вольтметры позволяют измерять напряжения до 300 кВ. Для определения более высоких значений напряжения используют измерительные трансформаторы.

Для оценки переменных токов и напряжений используют понятия действующего или среднеквадратического значения, амплитудного или максимального значения и средневыпрям- ленного значения.

Действующее, амплитудное и средневыпрямленное значения связаны между собой через коэффициент формы кривой и коэффициент амплитуды.

Коэффициент формы сигнала равен

где U a - действующее значение сигнала, U cp - средневыпрямленное значение сигнала.

Коэффициент амплитуды сигнала определяется как

где - амплитудное значение сигнала.

Значения этих коэффициентов зависят от формы кривой напряжения или тока. Для синусоиды = 1,11 и к а = л/2 = 1,41. Отсюда, измерив одно из трех указанных выше значений измеряемой величины, можно определить остальные.

При несинусоидальном сигнале чем ближе он будет к прямоугольной форме, тем ближе к единице будут коэффициенты кф и к и. Для узкой и острой формы кривой измеряемой величины эти коэффициенты будут иметь большее значение.

Приборы электродинамической, ферродинамической, электромагнитной, электростатической и термоэлектрической систем реагируют на действующее значение измеряемой величины. Приборы выпрямительной системы реагируют на средневыпрямленное значение измеряемой величины. Приборы электронной системы, как аналоговые, так и цифровые, в зависимости от типа измерительного преобразователя переменного напряжения в постоянное, могут реагировать на действующее, средневыпрямленное или амплитудное значение измеряемой величины.

Вольтметры и амперметры всех систем обычно градуируют в действующих значениях при синусоидальной форме кривой тока. При несинусоидальной форме кривой у приборов, реагирующих на средневыпрямленное или амплитудное значение тока или напряжения, будет возникать дополнительная погрешность, так как коэффициенты кф и к а при несинусоидальной форме кривой отличаются от соответствующих значений для синусоиды.

Измерением называется процесс нахождения опытным путем значения физической величины с помощью специальных технических средств. Электроизмерительные приборы широко используются при наблюдении за работой электроустановок, при контроле за их состоянием и режимами работы, при учете расхода и качества электрической энергии, при ремонте и наладке электротехнического оборудования.

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов, функционально связанных с измеряемыми физическими величинами в форме, доступной для восприятия наблюдателем или автоматическим устройством.

Электроизмерительные приборы делятся:

  • по виду получаемой информации на приборы для измерения электрических (ток, напряжение, мощность и др.) и неэлектрических (температура, давление и др.) величин;
  • по методу измерения - на приборы непосредственной оценки (амперметр, вольтметр и др.) и приборы сравнения (измерительные мосты и компенсаторы);
  • по способу представления измеряемой информации - на аналоговые и дискретные (цифровые).

Наибольшее распространение получили аналоговые приборы непосредственной оценки, которые классифицируются по признакам: род тока (постоянный или переменный), род измеряемой величины (ток, напряжение, мощность , сдвиг фаз), принцип действия (магнитоэлектрические, электромагнитные, электро- и ферродинамические), класс точности и условия эксплуатации.

Для расширения пределов измерения электрических приборов на постоянном токе используются шунты (для тока) и добавочные сопротивления Rd (для напряжения); на переменном токе трансформаторы тока (тт) и напряжения (тн).

Используемые приборы для измерения электрических величин.

Измерение напряжения осуществляется вольтметром (V), подключаемым непосредственно на зажимы исследуемого участка электрической цепи.

Измерение тока осуществляется амперметром (А), включаемым последовательно с элементами исследуемой цепи.

Измерение мощности (W) и сдвига фаз () в цепях переменного тока производится с помощью ваттметра и фазометра. Эти приборы имеют две обмотки: неподвижную токовую, которая включается последовательно, и подвижную обмотку напряжения, включаемую параллельно.

Для измерения частоты переменного тока (f) применяются частотометры.

Для измерения и учета электрической энергии - счетчики электрической энергии, подключаемые к измерительной цепи аналогично ваттметрам.

Основными характеристиками электроизмерительных приборов являются: погрешность, вариации показаний, чувствительность, потребляемая мощность, время установления показаний и надежность.

Основными частями электромеханических приборов являются электроизмерительная цепь и измерительный механизм.

Измерительная цепь прибора является преобразователем и состоит из различных соединений активного и реактивного сопротивлений и других элементов в зависимости от характера преобразования. Измерительный механизм преобразует электромагнитную энергию в механическую, необходимую для углового перемещения его подвижной части относительно неподвижной. Угловые перемещения стрелки а функционально связано с крутящим и противодействующим моментом прибора уравнением преобразования вида:

к - конструктивная постоянная прибора;

Электрическая величина, под действием которой стрелка прибора отклоняется на угол

На основании данного уравнения можно утверждать, что если:

  1. входная величина Х в первой степени (п=1), то а будет менять знак при изменении полярности, и на частотах, отличных от 0, прибор работать не может;
  2. n=2, то прибор может работать как на постоянном, так и на переменном токе;
  3. в уравнение входит не одна величина, то в качестве входной можно выбирать любую, оставляя остальные постоянными;
  4. две величины являются входными, то прибор можно использовать в качестве множительного преобразователя (ваттметр, счетчик) или делительного (фазометр, частотометр);
  5. при двух или более входных величинах на несинусоидальном токе прибор обладает свойством избирательности в том смысле, что отклонение подвижной части определяется величиной только одной частоты.

Общими элементами являются: отсчетное устройство, подвижная часть измерительного механизма, устройства для создания вращающего, противодействующего и успокаивающего моментов.

Отсчетное устройство имеет шкалу и указатель. Интервал между соседними метками шкалы называют делением.

Цена деления прибора представляет собой значение измеряемой величины, вызывающее отклонение стрелки прибора на одно деление и определяется зависимостями:

Шкалы могут быть равномерными и неравномерными. Область между начальным и конечным значениями шкалы называют диапазоном показаний прибора.

Показания электроизмерительных приборов несколько отличаются от действительных значений измеряемых величин. Это вызвано трением в измерительной части механизма, влиянием внешних магнитных и электрических полей, изменением температуры окружающей среды и т.д. Разность между измеренным Аи и действительным Ад значениями контролируемой величины называется абсолютной погрешностью измерений:

Так как абсолютная погрешность не дает представления о степени точности измерений, то используют относительную погрешность:

Поскольку действительное значение измеряемой величины при измерении неизвестно, для определения и можно воспользоваться классом точности прибора.

Амперметры, вольтметры и ваттметры подразделяются на 8 классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положительную или отрицательную основную приведенную погрешность, которую имеет данный прибор. Например, для класса точности 0,5 приведенная погрешность составит ±0,5%.

Технические характеристики амперметров
Наименование параметра Амперметры Э47 Вольтметры Э47
Система электромагнитная электромагнитная
Способ вывода информации аналоговый аналоговый
Диапазон измерений 0...3000 А 0...600 В
Способ установки на панель щита на панель щита
Способ включения <50 А- непосредственный, >100 А-через трансформатор тока с вторичным током 5 А непосредственный
Класс точности 1,5 1,5
Предел допускаемой основной погрешности приборов, % ±1,5 ±1,5
Номинальное рабочее напряжение, не более 400 В 600 В
Допустимая длительная перегрузка (не более 2 ч) 120% от конечного значения диапазона измерений
Средняя наработка до отказа, не менее, ч 65000 65000
Средний срок службы, не менее, лет 8 8
Температура окружающего воздуха, °С 20±5 20±5
Частота измеряемой величины, Гц 45...65 45...65
Положение монтажной плоскости вертикальное вертикальное
Габариты, мм 72x72x73,5 96x96x73,5 72x72x73,5 96x96x73,5

Электроизмерительные приборы (амперметры и вольтметры) серии Э47

Применяются в низковольтных комплектных устройствах в распределительных электрических сетях жилых, коммерческих и производственных объектов.

Амперметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения силы тока в электрических цепях переменного тока.

Вольтметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения напряжения в электрических цепях переменного тока.

Широкий диапазон измерений: амперметры до 3000 А, вольтметры до 600 В. Класс точности 1.5.

Амперметры, рассчитанные на измерение токов выше 50 А подключают к измеряемой цепи через трансформатор тока с номинальным вторичным рабочим током 5 А.

Принцип действия амперметров и вольтметров серии Э47

Амперметры и вольтметры Э47 относятся к приборам с электромагнитной системой. В составе имеют круглую катушку с помещенными внутрь подвижным и неподвижным сердечниками. При протекании тока через витки катушки, создается магнитное поле, намагничивающее оба сердечника. Вследствие чего.

одноименные полюса сердечников отталкиваются, и подвижный сердечник поворачивает ось со стрелкой. Для защиты от негативного влияния внешних магнитных полей, катушка и сердечники защищены металлическим экраном.

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии поля постоянного магнита и проводников с током, а электромагнитной - на втягивании стального сердечника в неподвижную катушку при существовании в ней тока. Электродинамическая система имеет две катушки. Одна из катушек, подвижная, укрепляется на оси и располагается внутри неподвижной катушки.

Принцип действия прибора, возможность его работы в тех или иных условиях, возможные предельные погрешности прибора могут быть установлены по условным обозначениям, нанесенным на циферблат прибора.

Например: (А) - амперметр; (~) - переменный ток в пределах от 0 до 50А; () - вертикального положения, класс точности 1,0 и т.д.

Измерительные трансформаторы тока и напряжения имеют ферромагнитные магнитопроводы, на которых располагаются первичные и вторичные обмотки. Число витков вторичной обмотки всегда больше первичной.

Зажимы первичной обмотки трансформатора тока обозначают буквами Л1 и Л2 (линия), а вторичной - И1 и И2 (измерение). По правилам техники безопасности один из зажимов вторичной обмотки трансформатора тока, так же, как и трансформатора напряжения, заземляют, что делается на случай повреждения изоляции. Первичную обмотку трансформатора тока включают последовательно с объектом, у которого проводят измерения. Сопротивление первичной обмотки трансформатора тока мало по сравнению с сопротивлением потребителя. Вторичная обмотка замыкается на амперметр и токовые цепи приборов (ваттметр, счетчик и т. д.). Токовые обмотки ваттметров, счетчиков и реле рассчитывают на 5А, вольтметры, цепи напряжения ваттметров, счетчиков и обмоток реле - на 100 В.

Сопротивления амперметра и токовых цепей ваттметра невелики, поэтому трансформатор тока работает фактически в режиме короткого замыкания. Номинальный ток вторичной обмотки равен 5А. Коэффициент трансформации трансформатора тока равен отношению первичного тока к номинальному току вторичной обмотки, а у трансформатора напряжения - отношению первичного напряжения ко вторичному номинальному.

Сопротивление вольтметра и цепей напряжения измерительных приборов всегда велико и составляет не менее тысячи Ом. В связи с этим трансформатор напряжения работает в режиме холостого хода.

Показания приборов, включенных через трансформаторы тока и напряжения, необходимо умножать на коэффициент трансформации.

Трансформаторы тока ТТИ

Трансформаторы тока ТТИ предназначены: для применения в схемах учета электроэнергии при расчетах с потребителями; для применения в схемах коммерческого учета электроэнергии; для передачи сигнала измерительной информации измерительным приборам или устройствам защиты и управления. Корпус трансформатора выполнен неразборным и опломбирован наклейкой, что делает невозможным доступ ко вторичной обмотке. Клеммные зажимы вторичной обмотки закрываются прозрачной крышкой, что обеспечивает безопасность при эксплуатации. Кроме того, крышку можно опломбировать. Это особенно важно в схемах учета электроэнергии, так как позволяет исключить несанкционированный доступ к клеммным зажимам вторичной обмотки.

Встроенная медная луженая шина у модификации ТТИ-А - дает возможность подключения как медных, так и алюминиевых проводников.

Номинальное напряжениe - 660 В; номинальная частота сети - 50 Гц; класс точности трансформатора 0,5 и 0,5S; номинальный вторичный рабочий ток - 5А.

Технические характеристики трансформаторов ТТИ
Модификации трансформаторов Номинальный первичный ток трансформатора, А
ТТИ-А 5; 10; 15; 20; 25; 30; 40; 50; 60; 75; 80; 100; 120; 125; 150; 200; 250; 300; 400; 500; 600; 800; 1000
ТТИ-30 150; 200; 250; 300
ТТИ-40 300; 400; 500; 600
ТТИ-60 600; 750; 800; 1000
ТТИ-85 750; 800; 1000; 1200; 1500
ТТИ-100 1500; 1600; 2000; 2500; 3000
ТТИ-125 1500; 2000; 2500; 3000; 4000; 5000

Электронные аналоговые приборы представляют собой сочетание различных электронных преобразователей и магнитоэлектрического прибора и служат для измерения электрических величин. Они обладают высоким входным сопротивлением (малым потреблением энергии от объекта измерения) и высокой чувствительностью. Используются для измерения в цепях повышенной и высокой частоты.

Принцип действия цифровых измерительных приборов основан на преобразовании измеряемого непрерывного сигнала в электрический код, отображаемый в цифровой форме. Достоинствами являются малые погрешности измерения (0.1-0,01 %) в широком диапазоне измеряемых сигналов и высокое быстродействие от 2 до 500 измерений в секунду. Для подавления индустриальных помех они снабжены специальными фильтрами. Полярность выбирается автоматически и указывается на отсчетном устройстве. Содержат выход на цифропечатающее устройство. Используются как для измерения напряжения и тока, так и пассивных параметров - сопротивление, индуктивность, емкость. Позволяют измерять частоту и ее отклонение, интервал времени и число импульсов.

Основы метрологии

1. Метрология – наука об измерениях

a. Предмет и задачи метрологии

b. Метрологическое обеспечение и его структура

2. Понятие измерения, его роль и место в метрологии

a. Понятие измерения

b. Классификация измерений

c. Характеристики измерений

d. Методы измерений и их классификация

3. Единицы физических величин и их системы. Основное уравнение измерений

4. Средства измерений

a. Классификация средств измерений

b. Метрологические характеристики средств измерений

c. Классы точности средств измерений и их нормирование

d. Структурные схемы средств измерений. Связь между характеристиками и структурой средства измерений

5. Передача размера единиц от эталонов образцовым и рабочим средствам измерений. Поверка средств измерений

a. Поверка средств измерений. Основные цели и задачи. Качество поверки и ее периодичность.

b. Эталоны и образцовые средства измерений, их место в системе воспроизведения и передачи размеров единиц

c. Поверочные схемы и способы их построения.

d. Организация и проведение поверки средств измерений.

Погрешности измерения

  1. Общие сведения о погрешности измерения
  2. Классификация погрешностей
  3. Систематические погрешности

a. Понятие систематической погрешности

b. Причины возникновения систематических погрешностей

c. Обнаружение и исключение систематических погрешностей

  1. Случайные погрешности

a. Понятие случайной погрешности измерений и причины их возникновения.

b. Генеральная совокупность и ее числовые характеристики

c. Важнейшие функции распределения

d. Числовые характеристики генеральной совокупности

e. Выборка и ее характеристики

f. Построение доверительного интервала

g. Исключение грубых погрешностей

Обработка и представление результатов измерения

1. Однократные прямые измерения

2. Обработка результатов прямых измерений с многократными наблюдениями

3. Обработка и представление результатов косвенных измерений.

4. Выбор средств измерений, обеспечивающих необходимое качество измерений.

5. Обработка результатов измерений при наличии нескольких источников погрешности.

6. Представление результатов измерений

Технические средства и методы измерения электрических величин

1. Меры электрических величин, их устройство и характеристики

a) Мера ЭДС. Назначение, устройство, основные характеристики.

b) Меры сопротивления, емкости и индуктивности. Назначение, устройство, основные характеристики.

2. Аналоговые средства измерения

a) Устройство и характеристики измерительных преобразователей, используемых в средствах измерения электрического тока и напряжения

i. Пассивные преобразователи без изменения рода тока. Назначение, устройство, основные характеристики.

ii. Пассивные преобразователи с изменением рода тока

iii. Активные преобразователи

b) Электромеханические измерительные механизмы и средства измерений на их основе

i. Магнитоэлектрический измерительный механизм. Назначение, устройство, основные характеристики.

ii. Электромагнитный измерительный механизм. Назначение, устройство, основные характеристики.

iii. Электродинамический измерительный механизм. Назначение, устройство, основные характеристики.

iv. Электростатический измерительный механизм. Назначение, устройство, основные характеристики.

c) Электронные аналоговые средства измерений

i. Электронные вольтметры постоянного тока. Назначение, устройство, основные характеристики.

ii. Электронные вольтметры переменного тока. Назначение, устройство, основные характеристики.

d) Универсальный электронный осциллограф. Назначение, устройство, основные характеристики.

e) Компенсаторы и мосты постоянного тока. Назначение, устройство, основные характеристики.

3. Цифровые средства измерения

a) Принципы работы АЦП. Дискретизация во времени и квантование по уровню.

b) Восстановление сигнала по дискретным отсчетам. Теорема Котельникова (без доказательства)

c) Основные характеристики и источники погрешности АЦП.

d) Коды и системы счисления

i. АЦП последовательного счета. Принцип работы и основные характеристики.

ii. АЦП поразрядного уравновешивания. Принцип работы и основные характеристики

f) ЦАП. Принцип работы устройства сравнения.

g) Принцип работы, устройство и основные характеристики цифровых средств измерения последовательного счета

i. Цифровой измеритель временных интервалов. Назначение, устройство, основные характеристики.

ii. Цифровые фазометры (без усреднения и с усреднением). Назначение, устройство, основные характеристики.

iii. Цифровые частотомеры и периодомеры. Назначение, устройство, основные характеристики.

iv. Цифровой время-импульсный вольтметр. Назначение, устройство, основные характеристики.

Чтоб измерять электрическую величину используют технические средства, которые имеют определенные метрологические характеристики. Их называют средствами измерения.

Измерительные установки и приборы, меры, измерительные преобразователи – это все относится к средствам измерения.

Для воспроизведения заданного значения физической величины используют меры.

Меры электрических величин – индуктивность, ЭДС, электрическое сопротивление, электрической емкость и т.д. Образцовыми называют меры высшего класса, по ним сверяют приборы и проводят градуировку шкал устройств.

Устройства, которые вырабатывают электрический сигнал в форме удобной для обработки, передачи, дальнейшего преобразования или хранения, но не поддающиеся непосредственному восприятию называют измерительными преобразователями. Для преобразования электрических величин в электрические относят: делители напряжения, шунты и т.д. Не электрических в электрические (датчики давления, энкодеры).

Если форма сигналов доступна для наблюдения – это измерительные приборы (вольтметры, амперметры и т.д.).

Совокупность измерительных приборов и преобразователей, мер, которые располагаются в одном месте и генерирует при измерении форму сигнала, удобную для наблюдению именуют измерительной установкой.

Все выше перечисленные средства можно рассортировать по следующим признакам: по способу регистрации и представления информации, ее виду и методу измерения.

По виду получаемой информации:

  • Электрические (мощность, ток и т.д.);
  • Не электрические (давление, скорость);

По методу измерения:

  • Сравнение (компенсаторы, измерительные мосты);
  • Непосредственная оценка (ваттметр, вольтметр);

По способу представления:

  • Цифровые;
  • Аналоговые (электронные или электромеханические);

Электроизмерительные приборы характеризуют такими основными показателями как: чувствительность, время установления показаний, надежность, погрешность, вариации показаний.

Самая большая разность показаний одного и того же устройства при одном и том же показании измеряемой величины называют вариацией показаний. Основная причина ее появления это трения в подвижных частях устройств.

Приращение перемещения указателя ∆а, относящееся к приращению измеряемой величины ∆х величают как чувствительность прибора S:

Если шкала устройства равномерна, то формула будет иметь вид:

Постоянная или цена деления прибора – обратная величина чувствительности С:

Равна она числу измеряемой величины на одно деление шкалы.

Потребляемая устройством из цепи мощность изменяет режим работы цепи. Это увеличивает вероятность появления погрешностей при измерении. Отсюда делаем вывод: чем меньше мощность, потребляемая из цепи, тем точнее прибор.

Время, за которое на дисплее (если приборы цифровые) или шкале (аналоговые), установится значение измеряемой величины после начала измерения – время установления показаний. Для аналоговых стрелочных устройств не должно превышать 4 секунды.

Сохранение заданных характеристик, точность показаний при установленных условиях работы и в течении заданного промежутка времени называют надежностью. Еще она характеризуется как среднее время исправной работы устройства.

Можно сделать вывод что при выборе измерительных устройств необходимо учитывать множество факторов, для корректной работы данных средств. Например, такие средства измерения как трансформаторы тока активно используются при измерении токов силовых линий, и не корректный выбор данных средств измерения может привести к авариям на линиях, вывода из строя дорогостоящего оборудования и остановки производства или отключением от питания целых городов.

Ниже вы можете посмотреть видео об основах метрологии и измерениях различных величин.

nber-horeca.ru - Браузеры. Компьютер. Социальные сети. Программы